join donate discuss

Richard Priestley – Transport beyond fossil fuels

Many countries are now setting themselves the goal of moving from petrol and diesel powered transportation systems to very much cleaner technologies. The UK, like many countries has set itself the goal of banning sales of new fossil fuelled vehicles by 2040. Norway plans to do so by 2025. Many people still don’t seem to realize that we already have most of the technologies we’ll need to run a modern global economy purely on renewable forms of energy. Renewably generated electricity, supplied via the grid, via batteries or via hydrogen fuel cells will be the basis of most methods of transport.

For over a hundred years trains and trams have used electricity via either overhead cables or live rails. There is a strong case to keep electrifying railway lines. An emerging alternative, particularly suitable for quiet rural railway lines, where the high cost of electrification might not be justified, are hydrogen fuel cell trains. Alstom is already marketing the Coradia iLint, and Siemens are now partnering with Ballard to make something similar. There are lots of advantages to getting people and freight off the roads and on to rails. Steel wheels on steel rails generate much less friction than rubber tyres on tarmac, meaning greater energy efficiency and less pollution. The longer thinner shape of trains means less air resistance, again aiding efficiency.

We will of course still need buses, trucks and cars. There are many possible fuel options. Oslo has a fleet of 135 buses powered on biomethane made from food waste and sewage. I’ve blogged about methanol fuel cells, and a whole range of innovative and experimental ships, planes, and solar panel clad roads and cars, which are all promising but not yet in common usage. Battery electric vehicles are getting massive media coverage due to Elon Musk and Tesla, and are beginning to sell in large numbers. Last year in Norway over half of all new cars sold were either battery electric or petrol/electric hybrids, but sadly in most other countries the proportion is very much smaller. In terms of volume of sales, China is a long way ahead of any other market for battery electric or hybrid cars and buses.

Hydrogen fuel cell vehicles are the other main technology to be moving from the experimental stage to the mass production stage. (earlier blogs from me in 2015 and 2017) The Scottish government has recently helped Aberdeen double its fleet of hydrogen fuel cell buses from ten to twenty. Cologne in Germany has just ordered thirty, and dozens of cities are ordering a few. Ballard, the Canadian hydrogen fuel cell specialist has now teamed up with some Chinese companies to build a fleet of 500 hydrogen fuel cell light trucks and the refuelling infrastructure to support their roll out in Shanghai. Meanwhile the Nikola company has secured 8,000 pre-orders for its huge hydrogen fuel cell trucks, and will start production next year in Arizona. At the other end of the spectrum is Riversimple, who are due to build their first twenty tiny hydrogen fuel cell cars later this year, and which our local car club may be in a position to trial. Exciting times!

The days of petrol and diesel are numbered. It is too early to say which technology will dominate in the post fossil fuel economy. Both hydrogen and batteries are in essence ways of storing surplus wind and solar electricity and it is this aspect of how best to store energy cheaply and at vast scale which may be the main determinate of which fuel is used where. There will undoubtedly be a role for many technologies in various settings. I’ll explore more on this next week.